

Digital Analysis of Remotely Sensed Imagery

By Jay Gao

[Download now](#)

[Read Online](#)

Digital Analysis of Remotely Sensed Imagery By Jay Gao

"Jay Gao's book on the analysis of remote sensing imagery is a well-written, easy-to-read, and informative text best serving graduate students in geosciences, and practitioners in the field of digital image analysis. Although Dr. Gao states that he has targeted his book at upper-level undergraduates and lower-level postgraduate students, its rigor and depth of mathematical analysis would challenge most students without prior experience in remote sensing and college-level mathematics. The book covers a lot of ground quickly, beginning with a basic explanation of pixels, digital numbers and histograms and advancing rapidly through a description of the most well-known satellite systems to data storage formats, rectification and classification. It best serves students who have already taken an introductory course in remote sensing. Following a three-chapter description of the basics the remaining eleven chapters are dedicated to the description of the most common image processing systems and the details of the image analysis functions which can be carried out. The largest portion of the text covers classification – spectral and spatial, neural networks, decision trees and expert systems – and is an invaluable reference to anyone interested in understanding image analysis terminology and the algorithms behind these different systems. The last chapter of the text is addressed to practitioners wishing to integrate remote sensing image data with GIS and/or GPS data. The text is nicely structured so that individual chapters can easily be skipped when their content is not of interest to the reader without impairing the understanding of later chapters.

"The first three chapters of the book cover introductory material that the reader should be familiar with for the most part, but also includes a very handy summary of today's satellite systems. Chapter one addresses basic material, such as pixel DN, coordinates, feature space, histograms, and spatial, spectral, temporal and radiometric resolution normally covered in an introductory course in remote sensing. Chapter two presents a very informative and up-to-date overview of today's satellite instruments including meteorological, oceanographic, earth resources, hyperspectral and radar instruments. Instrument and orbital parameters are presented in tabular form and make it easy to look up technical details such as spectral and spatial resolution, orbit type, repeat cycle and other instrument characteristics quickly. Written explanations are clear, readable and provide lots of interesting insight and useful tidbits of information

such as potential problems and the cost of imagery. For technicians and programmers the third chapter provides details on storage formats, including descriptions of BSQ, BIL and BIP binary formats, and the most common graphics formats like GIF, TIFF and JPEG together with data compression techniques. Non-technicians can skip this chapter since image processing software will generally take care of format conversions internally without a need for understanding the nuances of each.

"Chapters four will be of interest to anyone considering the purchase of image processing software, or trying to understand the differences between systems. Gao provides a useful overview of existing software – IDRISI, ERDAS Imagine, ENVI, ER Mapper, PCI, eCognition and GRASS. A brief history of each provides useful background, and a discussion of the features of each together with a comparison (also given in tabular form) is informative to anyone considering a purchase.

"Chapter five can also be viewed as a stand-alone reference on rectification, but also serves as an excellent overview of the problems of dealing with mapping on a curved surface and has particular application for geographers and cartographers. It discusses the sources of geometric distortion, coordinated systems and projections, how image rectification is done – including the use of ground control points and implications for the order of transformation employed. There is a nice example showing how accuracy is influenced by the number of GCPs employed for SPOT and Landsat TM. For non-technical students the transformation mathematics can be skipped. A rather minimal section on image subsetting and mosaicking is included. Chapter six continues in much the same vein as the previous chapter, but discussing image enhancement – techniques that improve the visual quality of an image. The terms introduced here, such as density slicing, linear enhancement, stretching, and histogram equalization, will be familiar to users of image processing software and Gao provides a useful explanation of each in turn. Other application-oriented utilities such as band ratioing, vegetation indices, IHS and Tasseled Cap transformations and principal component analysis are presented in a form which is understandable to students with good mathematical grounding.

"The remainder of the text deals, to a large extent, with the topic of classification. Chapter seven initially discusses elements of image interpretation, but then devotes the chapter to a detailed presentation of the most common (and affordable) of these - spectral analysis. Gao presents the different algorithms used to define spectral distance, and then devotes text to a discussion of the inner workings of unsupervised classification systems. The section on supervised classification is a very useful reference for anyone undertaking this process – describing how to set about the classification process, the differences between the different classifiers, and how to choose an appropriate one. The concepts of fuzzy logic and sub-pixels classifiers are also presented briefly.

"From this point on, the text becomes much more specialized and technical and is geared towards graduate students, those carrying out research projects, and those interested in algorithmic detail. Chapter 8 is the first dealing with artificial intelligence and describes the fundamentals of neural networks. It provides

sufficient information for a technically-minded non-specialist to understand the workings of such a system and serves as a good introduction to someone who is considering this field of research. Chapter nine offers an explanation of decision trees with both a descriptive verbal approach and with mathematical algorithmic detail. Chapter ten addresses spatial classifiers – in particular the analysis of texture. This chapter again leans more heavily towards mathematics and the detail is more suited to readers with a strong technical bent. Gao goes on to discuss the process of image segmentation and thence the fundamentals of object-oriented classification. There is a useful overview of two popular software packages – eCognition and Feature Analyst – together with a discussion of the strengths and weaknesses of object-based classification. Chapter eleven presents an overview of expert systems. This is an advanced field of artificial intelligence and is an ambitious undertaking to describe in fifty or so pages. It is an interesting read for someone trying to gain a superficial knowledge of the workings of such a system and the associated terminology, but for anyone wishing to work in the field, a much more in-depth coverage is necessary.

"At this point, the student who was just trying to understand the basics of image processing and classification (and who skipped chapters eight through eleven) should resume reading as the last three chapters provide very helpful practical information. Chapter twelve provides a useful discussion on the methodology for assessing the accuracy of a classification and includes sources of inaccuracy and interpretation of an error matrix. It provides worked examples of accuracy assessments using simple math. This is a valuable addition to the text and presents an important process that is often overlooked in reporting classification results. Chapters thirteen and fourteen also deal with very practical matters. Chapter thirteen describes procedures for handling the analysis of temporal changes via a variety of change detection algorithms, and chapter fourteen introduces the use of GIS and GPS data in image analysis.

"Dr. Gao has written an excellent text describing technical information in a very readable manner. His book will serve as a good text for a course in remote sensing/image analysis, assuming that the student has received instruction in the fundamentals of remote sensing and been introduced to some image processing software. Students wishing to become adept at the practicalities of fundamental image processing skills and classification can easily skip the mid section of the text, whereas those who are keen to learn about more sophisticated classifiers will gain the fundamentals of these from this section. Overall I found the book very informative and a pleasure to read."

Reviewed by Helen M. Cox, PhD.
Associate Professor,
Department of Geography,
California State University, Northridge

[Download Digital Analysis of Remotely Sensed Imagery ...pdf](#)

 [Read Online Digital Analysis of Remotely Sensed Imagery ...pdf](#)

Digital Analysis of Remotely Sensed Imagery

By Jay Gao

Digital Analysis of Remotely Sensed Imagery By Jay Gao

"Jay Gao's book on the analysis of remote sensing imagery is a well-written, easy-to-read, and informative text best serving graduate students in geosciences, and practitioners in the field of digital image analysis. Although Dr. Gao states that he has targeted his book at upper-level undergraduates and lower-level postgraduate students, its rigor and depth of mathematical analysis would challenge most students without prior experience in remote sensing and college-level mathematics. The book covers a lot of ground quickly, beginning with a basic explanation of pixels, digital numbers and histograms and advancing rapidly through a description of the most well-known satellite systems to data storage formats, rectification and classification. It best serves students who have already taken an introductory course in remote sensing. Following a three-chapter description of the basics the remaining eleven chapters are dedicated to the description of the most common image processing systems and the details of the image analysis functions which can be carried out. The largest portion of the text covers classification – spectral and spatial, neural networks, decision trees and expert systems – and is an invaluable reference to anyone interested in understanding image analysis terminology and the algorithms behind these different systems. The last chapter of the text is addressed to practitioners wishing to integrate remote sensing image data with GIS and/or GPS data. The text is nicely structured so that individual chapters can easily be skipped when their content is not of interest to the reader without impairing the understanding of later chapters.

"The first three chapters of the book cover introductory material that the reader should be familiar with for the most part, but also includes a very handy summary of today's satellite systems. Chapter one addresses basic material, such as pixel DN, coordinates, feature space, histograms, and spatial, spectral, temporal and radiometric resolution normally covered in an introductory course in remote sensing. Chapter two presents a very informative and up-to-date overview of today's satellite instruments including meteorological, oceanographic, earth resources, hyperspectral and radar instruments. Instrument and orbital parameters are presented in tabular form and make it easy to look up technical details such as spectral and spatial resolution, orbit type, repeat cycle and other instrument characteristics quickly. Written explanations are clear, readable and provide lots of interesting insight and useful tidbits of information such as potential problems and the cost of imagery. For technicians and programmers the third chapter provides details on storage formats, including descriptions of BSQ, BIL and BIP binary formats, and the most common graphics formats like GIF, TIFF and JPEG together with data compression techniques. Non-technicians can skip this chapter since image processing software will generally take care of format conversions internally without a need for understanding the nuances of each.

"Chapters four will be of interest to anyone considering the purchase of image processing software, or trying to understand the differences between systems. Gao provides a useful overview of existing software – IDRISI, ERDAS Imagine, ENVI, ER Mapper, PCI, eCognition and GRASS. A brief history of each provides useful background, and a discussion of the features of each together with a comparison (also given in tabular form) is informative to anyone considering a purchase.

"Chapter five can also be viewed as a stand-alone reference on rectification, but also serves as an excellent overview of the problems of dealing with mapping on a curved surface and has particular application for geographers and cartographers. It discusses the sources of geometric distortion, coordinated systems and projections, how image rectification is done – including the use of ground control points and implications for

the order of transformation employed. There is a nice example showing how accuracy is influenced by the number of GCPs employed for SPOT and Landsat TM. For non-technical students the transformation mathematics can be skipped. A rather minimal section on image subsetting and mosaicking is included. Chapter six continues in much the same vein as the previous chapter, but discussing image enhancement – techniques that improve the visual quality of an image. The terms introduced here, such as density slicing, linear enhancement, stretching, and histogram equalization, will be familiar to users of image processing software and Gao provides a useful explanation of each in turn. Other application-oriented utilities such as band ratioing, vegetation indices, IHS and Tasseled Cap transformations and principal component analysis are presented in a form which is understandable to students with good mathematical grounding.

"The remainder of the text deals, to a large extent, with the topic of classification. Chapter seven initially discusses elements of image interpretation, but then devotes the chapter to a detailed presentation of the most common (and affordable) of these - spectral analysis. Gao presents the different algorithms used to define spectral distance, and then devotes text to a discussion of the inner workings of unsupervised classification systems. The section on supervised classification is a very useful reference for anyone undertaking this process – describing how to set about the classification process, the differences between the different classifiers, and how to choose an appropriate one. The concepts of fuzzy logic and sub-pixels classifiers are also presented briefly.

"From this point on, the text becomes much more specialized and technical and is geared towards graduate students, those carrying out research projects, and those interested in algorithmic detail. Chapter 8 is the first dealing with artificial intelligence and describes the fundamentals of neural networks. It provides sufficient information for a technically-minded non-specialist to understand the workings of such a system and serves as a good introduction to someone who is considering this field of research. Chapter nine offers an explanation of decision trees with both a descriptive verbal approach and with mathematical algorithmic detail. Chapter ten addresses spatial classifiers – in particular the analysis of texture. This chapter again leans more heavily towards mathematics and the detail is more suited to readers with a strong technical bent. Gao goes on to discuss the process of image segmentation and thence the fundamentals of object-oriented classification. There is a useful overview of two popular software packages – eCognition and Feature Analyst – together with a discussion of the strengths and weaknesses of object-based classification. Chapter eleven presents an overview of expert systems. This is an advanced field of artificial intelligence and is an ambitious undertaking to describe in fifty or so pages. It is an interesting read for someone trying to gain a superficial knowledge of the workings of such a system and the associated terminology, but for anyone wishing to work in the field, a much more in-depth coverage is necessary.

"At this point, the student who was just trying to understand the basics of image processing and classification (and who skipped chapters eight through eleven) should resume reading as the last three chapters provide very helpful practical information. Chapter twelve provides a useful discussion on the methodology for assessing the accuracy of a classification and includes sources of inaccuracy and interpretation of an error matrix. It provides worked examples of accuracy assessments using simple math. This is a valuable addition to the text and presents an important process that is often overlooked in reporting classification results. Chapters thirteen and fourteen also deal with very practical matters. Chapter thirteen describes procedures for handling the analysis of temporal changes via a variety of change detection algorithms, and chapter fourteen introduces the use of GIS and GPS data in image analysis.

"Dr. Gao has written an excellent text describing technical information in a very readable manner. His book will serve as a good text for a course in remote sensing/image analysis, assuming that the student has received instruction in the fundamentals of remote sensing and been introduced to some image processing software. Students wishing to become adept at the practicalities of fundamental image processing skills and classification can easily skip the mid section of the text, whereas those who are keen to learn about more

sophisticated classifiers will gain the fundamentals of these from this section. Overall I found the book very informative and a pleasure to read."

Reviewed by Helen M. Cox, PhD.
Associate Professor,
Department of Geography,
California State University, Northridge

Digital Analysis of Remotely Sensed Imagery By Jay Gao Bibliography

- Sales Rank: #2127883 in Books
- Published on: 2009-01-12
- Original language: English
- Number of items: 1
- Dimensions: 9.10" h x 1.58" w x 6.30" l, .1 pounds
- Binding: Hardcover
- 674 pages

 [Download Digital Analysis of Remotely Sensed Imagery ...pdf](#)

 [Read Online Digital Analysis of Remotely Sensed Imagery ...pdf](#)

Download and Read Free Online Digital Analysis of Remotely Sensed Imagery By Jay Gao

Editorial Review

From the Back Cover

Explore the Latest Techniques and Trends in Remotely Sensed Digital Image Analysis!

Written in easy-to-follow language with a minimum of technical jargon, *Digital Analysis of Remotely Sensed Imagery* provides exhaustive coverage of the entire process of analyzing remotely sensed data for the purpose of producing accurate representations in thematic map format. The book explores cutting-edge techniques and trends in image analysis, as well as the relationship between image processing and other recently emerged special technologies.

Filled with numerous references to the current literature, this essential imaging resource paints a vivid picture of the current status of innovative image analysis methods and future directions in the field. Find state-of-the-art information on storage of remotely sensed data...the image analysis system...image rectification...image enhancement...image classification...accuracy assessment...change detection...intelligent image classification...decision tree classification...integration of image analysis with GIS/GPS...and much more. *Digital Analysis of Remotely Sensed Imagery* features:

- Comprehensive, up-to-date coverage of remotely sensed image processing
- Details on the relationship between image processing and other recently emerged special technologies
- Promising new trends and future directions in image analysis
- A lavish 16-page color insert

Inside this Expert Guide to Analyzing Remotely Sensed Images

• Remotely sensed data • Storage of remotely sensed data • The image analysis system • Image rectification • Image enhancement • Image classification • Accuracy assessment • Change detection • Intelligent image classification • Decision tree classification • Innovative image classification • Integration of image analysis with GIS/GPS

About the Author

Jay Gao, Ph.D., lectures on geographic information systems at the University of Auckland's School of Geography, Geology, and Environmental Science. He is also the Auckland branch representative on the council for the New Zealand Geographic Society.

Users Review

From reader reviews:

Lisa Chaffee:

The book Digital Analysis of Remotely Sensed Imagery gives you the sense of being enjoy for your spare time. You can use to make your capable considerably more increase. Book can to be your best friend when you getting pressure or having big problem using your subject. If you can make looking at a book Digital Analysis of Remotely Sensed Imagery to become your habit, you can get a lot more advantages, like add your current capable, increase your knowledge about several or all subjects. You may know everything if you like open up and read a publication Digital Analysis of Remotely Sensed Imagery. Kinds of book are a lot of. It means that, science e-book or encyclopedia or other individuals. So , how do you think about this

guide?

Laura Enriquez:

This Digital Analysis of Remotely Sensed Imagery book is absolutely not ordinary book, you have it then the world is in your hands. The benefit you have by reading this book will be information inside this e-book incredible fresh, you will get facts which is getting deeper you read a lot of information you will get. This particular Digital Analysis of Remotely Sensed Imagery without we understand teach the one who examining it become critical in considering and analyzing. Don't be worry Digital Analysis of Remotely Sensed Imagery can bring when you are and not make your case space or bookshelves' grow to be full because you can have it within your lovely laptop even mobile phone. This Digital Analysis of Remotely Sensed Imagery having very good arrangement in word in addition to layout, so you will not feel uninterested in reading.

Sandra Davis:

Reading can called brain hangout, why? Because when you find yourself reading a book specially book entitled Digital Analysis of Remotely Sensed Imagery the mind will drift away trough every dimension, wandering in each and every aspect that maybe mysterious for but surely can be your mind friends. Imaging every word written in a book then become one application form conclusion and explanation this maybe you never get just before. The Digital Analysis of Remotely Sensed Imagery giving you yet another experience more than blown away your head but also giving you useful facts for your better life on this era. So now let us teach you the relaxing pattern is your body and mind will likely be pleased when you are finished looking at it, like winning a. Do you want to try this extraordinary shelling out spare time activity?

Deborah Fishman:

Reading a book for being new life style in this 12 months; every people loves to go through a book. When you learn a book you can get a lots of benefit. When you read ebooks, you can improve your knowledge, mainly because book has a lot of information upon it. The information that you will get depend on what kinds of book that you have read. If you wish to get information about your analysis, you can read education books, but if you act like you want to entertain yourself you can read a fiction books, this sort of us novel, comics, and soon. The Digital Analysis of Remotely Sensed Imagery will give you a new experience in looking at a book.

Download and Read Online Digital Analysis of Remotely Sensed Imagery By Jay Gao #4OG7M9FCBEU

Read Digital Analysis of Remotely Sensed Imagery By Jay Gao for online ebook

Digital Analysis of Remotely Sensed Imagery By Jay Gao Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Digital Analysis of Remotely Sensed Imagery By Jay Gao books to read online.

Online Digital Analysis of Remotely Sensed Imagery By Jay Gao ebook PDF download

Digital Analysis of Remotely Sensed Imagery By Jay Gao Doc

Digital Analysis of Remotely Sensed Imagery By Jay Gao Mobipocket

Digital Analysis of Remotely Sensed Imagery By Jay Gao EPub

4OG7M9FCBEU: Digital Analysis of Remotely Sensed Imagery By Jay Gao